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OUTLINE

Cosmic Anomaly

Dark Matter Subhalos outside

Dark Matter subhalos inside

Particle Physics realization
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Cosmic Ray Anomaly

Charged Cosmic Particles

 Positron fraction(>10Gev)
PAMELA

Electron+Positron
Peaking around 500Gev
Fermi 
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Dark Matter 
The Phenomena have no known astrophysics origin 
(Could be pulsar?)

Attractive explanation:  1 Tev WIMP 
DM + DM → messengers fields φ (on shell)
 → SM particles.
mφ<2mproton   
Sommerfeld enhancement to cross section
<σv>=BF × 3×10-26cm3s-1

Two issues: 
Gamma Ray? 
substructure?
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Physics System

Correlated System
 Liouville’s conservation law(too much information)

From N-body Simulation
★Via Lactea II 
    1 DM main halo in the centre
    100 inside the visible galaxy
    20,047 resolved DM subhalos 
     

★Extend as far out as 4,000 kpc
     Our Visible galaxy is 40 kpc aross
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Subhalos contributions

Positive contribution
Large Number  20,000 subhalos
High density 
small dispersion velocity
sub-substructure

Negative contribution
long distance to the milky way 
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GALPROP+Via Lactea II
GALPROP Numerically solve diffusion equation of 
electrons and positrons

Source

Main halo: 

Subhalos:   
similar density profile, 

Change the boundary condition of GALPROP by 
using the subhalos data from Via Lactea II
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the annihilation rate of diffuse DM particles of the host
halo.

For a given subhalo i at a distance !i from the edge of
the diffusion zone of the galaxy, the flux of e+ or e− on
this boundary takes the form

dΦi

dE
= BSH〈σv〉

dN

dE
(!i)

∫ ∞

0

r2ρ2i
!2iM

2
DM

dr (3)

where BSH is an average boost factor for the subhalos due
to Sommerfeld enhancement for example, and ρi(r) is the
mass density profile of the subhalo. The unboosted cross
section is assumed to be 〈σv〉 = 3 × 10−26 cm3 s−1 in
accordance with the standard assumption that the DM
abundance was determined by freeze-out starting from a
thermal density. In a more exact treatment, the boost
factor would be velocity dependent [25, 26] and appear
within the average over DM velocities indicated by the
brackets in 〈σv〉. Moreover each subhalo in general has a
different boost factor since the velocity dispersions that
determine BSH depend on the size of the subhalo [13]. For
this preliminary study, we simply parametrize the effect
by an average boost factor, where the averaging includes
the sum over all subhalos as well as the integration over
velocities.

The energy spectrum dN/dE of electrons from the DM
annihilations is taken for simplicity to be a step function
at the interaction point, dN/dE = M−1

DM
Θ(MDM − E0),

where E0 is the energy immediately following the an-
nihilation. We are interested in models where the DM
particles initially annihilate into two hidden sector gauge
or Higgs bosons, each of which subsequently decays into
e+e− [3]. The four-body phase space would thus be a
more exact expression for dN/dE, but the step function
has the correct qualitative shape and is simpler to imple-
ment in GALPROP.

The energy of the electron at the edge of the galaxy is
reduced from its initial value E0 by scattering with CMB
photons before reaching the galaxy (starlight, infrared
radiation and synchrotron radiation are only important
in the inner galaxy [27]), according to the loss equation
dE/d! = −κE2 [9] where κ = (4σT /3m2

e)uCMB = 6.31×
10−7 kpc GeV−1, σT = 8π

3
(αEM!/mec)2 is the Thomson

cross-section and uCMB = 0.062 eV/cm3 is the present
energy density of the CMB. It is convenient to write the
solution in the inverted form: E0 = (−κ! + 1/E(!))−1

for substitution into dN/dE. Numerically, we find that
the losses outside the diffusion zone make a small correc-
tion, and that the distinction between E0 and E(!) is not
important here.

Each subhalo is characterized by a density profile that
has been fit to the Einasto form

ρi = ρs,i exp

[

−
2

α

((

r

rs,i

)α

− 1

)]

(4)

with α = 0.17 [15]. The scale radius is found to be
proportional to the radius rvmax

at which the veloc-

! i
"

i

subhalo i

8 kpc
diffusion zone

20 kpc

FIG. 1: Geometry of a subhalo shining leptons on the bound-
ary of diffusion zone of the galaxy.

ity dispersion is at a maximum, through the relation
rs ∼= rvmax

/2.212, while the prefactor scales with the
maximum velocity vmax as ρs ∼= v2max/(0.897 · 4πr

2
sG).

To incorporate the contribution (3) to the lepton flux
from the subhalos in GALPROP, we add delta func-
tion source terms to q(r, z, p) for the cylindrical surface
bounding the diffusion zone, as illustrated in fig. 1:

qdisk = 2δ(z ± h/2)
∑

i

dΦi

dE
cos θi

qband = 2δ(r −R)
∑

i

dΦi

dE
sin θi (5)

where h and R are respectively the height and radius of
the cylinder. The factor of 2 corrects for the fact that
sources in GALPROP have no directionality, whereas the
flux impinging on the surface is inward. The sum is over
the 20,048 resolved subhalos in the Via Lactea II simu-
lation. In addition, the sources were averaged over the
azimuthal angle φ because GALPROP assumes cylindri-
cal symmetry in its 2D mode (and the 3D mode runs too
slowly for our purposes). Finally, the distance !i must
be corrected for subhalos that are close to the diffusion
zone; rather than the distance to the center of the galaxy,
it should be the distance to the cylindrical boundary. On
average, this is a reduction by 17 kpc compared to the
distance to the galactic center.
Although most subhalos were located outside of the

diffusion zone, there are 143 lying inside, whose contri-
bution required special treatment. Assuming approxi-
mate isotropy, we took their entire flux of e+ + e− to be
pumped into the diffusion zone from the boundary rather
than from their individual positions. Treating them in
this manner allowed us to group their contribution with
that of the other subhalos and thus consider a single av-
erage boost factor for all subhalos. This approximation
would break down if one subhalo happened to be very
close to our position in the galaxy, but treating such a
case would anyway require going beyond the standard
cylindrical symmetry (2D) mode of GALPROP and us-
ing the much slower 3D mode. We believe this treatment
is conservative in the sense that it should only underes-
timate the contributions of the nearby subhalos.

d

dt
ψe±(x,p, t) = Qe±(x, E) +∇ · (D(E)∇ψe±(x,p, t)) +

∂

∂E
[b(x, E)ψ±(x,p, t)]

ρEin(r) = ρsexp

�
− 2

α

��
r

rs

�α

− 1

��
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Mainhalo+Subhalo
better fit to PAMELA and Fermi with 2.2 Tev WIMP 
when subhalos are included(BFSH=3744,BFMH=92)

Larger mass is because of larger propagation 
distance. The energy loss is due to Inverse Compton 
Scattering with CMB, IR and Starlight 5
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FIG. 3: Same as fig. 2, but now including subhalo contribu-
tions to the lepton fluxes.
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FIG. 4: PAMELA data and predicted positron fraction of the
best main-halo-only fit to Fermi and PAMELA data, with an
unconstrained background.
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FIG. 5: Same as fig. 4, but now including subhalo contribu-
tions to the lepton fluxes.
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Subhalo and main halo annihilation
Main halo only

FIG. 6: Combined χ2 for the Fermi and PAMELA data as
a function of the dark matter mass, for the unconstrained
background. Dashed (blue) line: main halo DM annihilation
only. Solid (red) line: subhalo and main halo contributions
combined.
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Subhalo and main halo annihilation
Main halo only

FIG. 7: χ2 versus MDM for the Fermi e+ + e− data using
the GALPROP constrained background. Dashed (blue) line:
main halo only. Solid (red) line: subhalos plus main halo.

4.2. Constrained background

We performed a second analysis by taking the elec-
tron and positron backgrounds to be those predicted by
GALPROP. In this case, although there is no good simul-
taneous fit to the combined PAMELA and Fermi data,
we nevertheless find that SH contributions improve the
fit. In rough agreement with ref. [6], we find that the
PAMELA data require a boost factor several times higher
than that needed to fit the Fermi data.
The plots of χ2 versus MDM, for both the MH-only and

MH+SH models, are shown respectively for the Fermi
and PAMELA data in figures 7 and 8. It is striking that
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Gamma Ray

Best DM annihilation models predict much larger gamma ray fluxes 
near the galactic center(GC) from Final state radiation
(Bresstrahlung) and Inverse Compton Scattering(ICS)

 

We used the first year of Fermi LAT difuse gamma ray(Aug 8 2008 
to Aug 25 2009) data available from NASA to constrain the 
allowable DM annhihilaiton

Most Constrints
come from ICS here
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Numerical Result
Adding subhalos and still explaining PAMELA and 
Fermi only slightly reduce the gamma ray 
constraints

Density of DM main halo in the GC is still high

DM profile and final
state(4e,4μ,π,e) has 
some impact on it, but
not enough
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What about local subhalo?

100(s)  subhalos inside the galaxy from Via Lactrea

small velocity, high density and close to us

PAMELA and Fermi excess can come from the close 
subhalo

We are within 3 kpc of subhalo centre, but further 
away than 20pc.
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Where is the subhalo
SH1 - SH4 are from Via Lactea , and SH5 is 
engineered by choosing parameters close to SH4.
SH5 is with a higher density (so lower BF)
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The five subhalos

They are atypical in the sense of needing a higher -
than average central density.

a large rs is unlikely at small distances from the GC 
due to tidal disruption.

Each subhalo was situated along an optimal axis, 
namely that connecting the earth to the GC.

The biggest contribution of Gamma Ray is from 
final -state bremsstrahlung rather than ICS.
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Close Subhalo anisotropy

Fermi Dipole anisotropy 
of electron and positron
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Figure 10: Dependence of predicted gamma ray fluxes on
galactic latitude b, in the region −9◦ < ! < 9◦ at E = 23
GeV, the most constraining energy bin for the main halo sce-
nario. Black: main halo scenario (Einasto profile, BF = 110)
Dashed: subhalo 5, as specified in Table II. Background ICS
is included in both predictions, but signal is dominated by
final state radiation. Dots are the Fermi data for that region
and energy.

would contribute less than 0.1% of the local DM density.
From previous works, we infer that extragalactic

bounds on this scenario are not as strong as the ones
we have computed above. Bounds from dwarf spheroidal
galaxies could plausibly be important since the veloc-
ity dispersions are of the same order as what is required
for our subhalo enhancement, i.e. ∼ 10 − 50 km s−1
[44]. However, the most stringent Fermi LAT bounds
[45] from such galaxies put the upper limit on DM anni-
hilation into a 2µ final state at around BF = 3000 if only
final-state radiation is considered, and around 300 if ICS
bounds are included as well. [46] computed the cosmo-
logical dark matter annihilation bounds for the same 2µ
final state scenario, and find that BF larger than 300 is
excluded at the 90% confidence level. This is using the
results of the Millennium II structure formation simula-
tion, and is indeed model-dependent. Extrapolation to
the 4µ scenario is independent of astrophysics. We can
therefore take the results of [5, 33] who have construced
bounds on both channels. They show that FSR bounds
are consistently an order of magnitude weaker in the 4µ
case, given the softer photon spectrum in this scenario.
We can therefore take these extragalactic results to be
far less constraining than the stringent bounds from the
center of our own galaxy.
Finally, we verify that this model does not saturate

bounds on dipole anisotropy of the cosmic ray e+ + e−

spectrum. The dipole anisotropy can be defined as

δ = 3

√

C1

4π
, (21)
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Figure 11: Dipole anisotropy δ of the cosmic ray electron
and positron flux predicted by SH5 if it saturates the Fermi
excess. Background cosmic ray electrons and positrons are
included, and taken to be isotropic. δ increases monotonically
with energy from the red line (60 GeV) to the black line (500
GeV).

where C1 is the standard dipole power of the measured
electron and positron flux in the sky. The Fermi LAT
collaboration [47] have presented upper bounds on this
quantity. These range from δ <∼ 3×10−3 at Ee $ 60 GeV
up to δ <∼ 9 × 10−2 at Ee $ 500 GeV. Given a diffusive
model, this can be computed [47]:

δ =
3D(E)

c

|#∇ne|
ne

, (22)

where D(E) is the diffusion coefficient (3) and ne is the
density of cosmic ray electrons and positrons, including
astrophysical backgrounds. Taking the background to be
isotropic, we computed the dipole anisotropy in the case
of a single close subhalo producing enough electrons to
explain the Fermi excess. In every case δ falls well below
bounds. Results for SH5 are presented in Figure 11. The
anisotropy rises monotonically with energy, from 60 GeV
(red line) to 500 GeV (black line).

5. PARTICLE PHYSICS REALIZATIONS

In the previous sections we have identified scenar-
ios where subhalos could provide the observed excess
PAMELA and Fermi leptons, from a purely phenomeno-
logical perspective. In particular, certain values for the
annihilation cross section boost factors are needed for the
subhalos, and upper bounds for that of the main halo
(depending upon assumptions about its density profile)
were derived. It is interesting to ask whether simple par-
ticle physics models with boost factors from Sommerfeld
enhancement can be consistent with these requirements.
The simplest possibility for model building is dark mat-

ter that annihilates into light scalar or vector bosons,
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would contribute less than 0.1% of the local DM density.
From previous works, we infer that extragalactic

bounds on this scenario are not as strong as the ones
we have computed above. Bounds from dwarf spheroidal
galaxies could plausibly be important since the veloc-
ity dispersions are of the same order as what is required
for our subhalo enhancement, i.e. ∼ 10 − 50 km s−1
[44]. However, the most stringent Fermi LAT bounds
[45] from such galaxies put the upper limit on DM anni-
hilation into a 2µ final state at around BF = 3000 if only
final-state radiation is considered, and around 300 if ICS
bounds are included as well. [46] computed the cosmo-
logical dark matter annihilation bounds for the same 2µ
final state scenario, and find that BF larger than 300 is
excluded at the 90% confidence level. This is using the
results of the Millennium II structure formation simula-
tion, and is indeed model-dependent. Extrapolation to
the 4µ scenario is independent of astrophysics. We can
therefore take the results of [5, 33] who have construced
bounds on both channels. They show that FSR bounds
are consistently an order of magnitude weaker in the 4µ
case, given the softer photon spectrum in this scenario.
We can therefore take these extragalactic results to be
far less constraining than the stringent bounds from the
center of our own galaxy.
Finally, we verify that this model does not saturate

bounds on dipole anisotropy of the cosmic ray e+ + e−

spectrum. The dipole anisotropy can be defined as

δ = 3

√
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Figure 11: Dipole anisotropy δ of the cosmic ray electron
and positron flux predicted by SH5 if it saturates the Fermi
excess. Background cosmic ray electrons and positrons are
included, and taken to be isotropic. δ increases monotonically
with energy from the red line (60 GeV) to the black line (500
GeV).

where C1 is the standard dipole power of the measured
electron and positron flux in the sky. The Fermi LAT
collaboration [47] have presented upper bounds on this
quantity. These range from δ <∼ 3×10−3 at Ee $ 60 GeV
up to δ <∼ 9 × 10−2 at Ee $ 500 GeV. Given a diffusive
model, this can be computed [47]:

δ =
3D(E)

c

|#∇ne|
ne

, (22)

where D(E) is the diffusion coefficient (3) and ne is the
density of cosmic ray electrons and positrons, including
astrophysical backgrounds. Taking the background to be
isotropic, we computed the dipole anisotropy in the case
of a single close subhalo producing enough electrons to
explain the Fermi excess. In every case δ falls well below
bounds. Results for SH5 are presented in Figure 11. The
anisotropy rises monotonically with energy, from 60 GeV
(red line) to 500 GeV (black line).

5. PARTICLE PHYSICS REALIZATIONS

In the previous sections we have identified scenar-
ios where subhalos could provide the observed excess
PAMELA and Fermi leptons, from a purely phenomeno-
logical perspective. In particular, certain values for the
annihilation cross section boost factors are needed for the
subhalos, and upper bounds for that of the main halo
(depending upon assumptions about its density profile)
were derived. It is interesting to ask whether simple par-
ticle physics models with boost factors from Sommerfeld
enhancement can be consistent with these requirements.
The simplest possibility for model building is dark mat-

ter that annihilates into light scalar or vector bosons,
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Particle Physics 
Realization

certain values for the cross  section BF are needed for 
the subhalos

upper bound of BF for main halo

Is there simple Particle Physics model can be 
consistent with the requirements.
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Sommerfeld enhancement
The non-relativistic particles are moving in some 
potential. The wave function is distorted by the 
attractive potential.  Or Summing over all the ladder 
Feynman diagram (QFT)

Consider a DM particle with a U(1) coupling to a dark 
gauge boson of mass μ(O(1)Gev)

Using realistic velocity distribution and correct α, 
this typically predicts too much enhancement. 
Gamma ray constraints are immediately saturated.

χ

χ

X̄

X

. . .

FIG. 1: Ladder diagram giving rise to the Sommerfeld
enhancement for χχ → XX annihilation, via the exchange
of gauge bosons.

II. THE SOMMERFELD ENHANCEMENT

Dark matter annihilation cross sections in the low-
velocity regime can be enhanced through the so-called
“Sommerfeld effect” [9, 10, 11, 12, 13, 14, 15]. This
non-relativistic quantum effect arises because, when
the particles interact through some kind of force, their
wave function is distorted by the presence of a po-
tential if their kinetic energy is low enough. In the
language of quantum field theory, this correspond to
the contribution of “ladder” Feynman diagrams like
the one shown in Fig. 1 in which the force carrier is
exchanged many times before the annihilation finally
occurs. This gives rise to (non-perturbative) correc-
tions to the cross section for the process under con-
sideration. The actual annihilation cross section times
velocity will then be:

σv = S (σv)0 (1)

where (σv)0 is the tree level cross section times veloc-
ity, and in the following we will refer to the factor S
as the “Sommerfeld boost” or “Sommerfeld enhance-
ment” 1.

In this section we will study this process in a semi-
quantitative way using a simple case, namely that of
a particle interacting through a Yukawa potential. We
consider a dark matter particle of mass m. Let ψ(r)
be the reduced two-body wave function for the s-wave
annihilation; in the non-relativistic limit, it will obey
the radial Schrödinger equation:

1

m

d2ψ(r)

dr2
− V (r)ψ(r) = −mβ2ψ(r), (2)

where β is the velocity of the particle and V (r) =
−α

r e−mVr is an attractive Yukawa potential mediated
by a boson of mass mV.

The Sommerfeld enhancement S can be calculated by
solving the Schrödinger equation with the boundary
condition dψ/dr = imβψ as r → ∞. Eq. (2) can be
easily solved numerically. It is however useful to con-
sider some particular limits in order to gain some qual-
itative insight into the dependence of the Sommerfeld

1 In the case of repulsive forces, the Sommerfeld “enhance-
ment” can actually be S < 1, although we will not consider
this possibility here.

enhancement on particle mass and velocity. First of
all, we note that for mV → 0, the potential becomes
Coulomb-like. In this case the Schrödinger equation
can be solved analytically; the resulting Sommerfeld
enhancement is:

S =
πα

β
(1 − e−πα/β)−1. (3)

For very small velocities (β → 0), the boost S $
πα/β: this is why the Sommerfeld enhancement is
often referred as a 1/v enhancement. On the other
hand, S → 1 when α/β → 0, as one would expect.

It should however be noted that the 1/v behaviour
breaks down at very small velocities. The reason is
that the condition for neglecting the Yukawa part of
the potential is that the kinetic energy of the collision
should be much larger than the boson mass mV times
the coupling constant α, i.e., mβ2 % αmV, and this
condition will not be fulfilled for very small values of
β. This is also evident if we expand the potential in
powers of x = mVr; then, neglecting terms of order x2

or smaller, the Schrödinger equation can be written as
(the prime denotes the derivative with respect to x):

ψ′′ +
α

ε

ψ

x
=

(

−
β2

ε2
+

α

ε

)

ψ, (4)

having defined ε = mV/m. The Coulomb case is
recovered for β2 % αε, or exactly the condition on
the kinetic energy stated above. It is useful to de-
fine β∗ ≡

√

αmV/m such that β % β∗ is the velocity
regime where the Coulomb approximation for the po-
tential is valid.

Another simple, classical interpretation of this result
is the following. The range of the Yukawa interaction
is given by R $ m−1

V . Then the crossing time scale is
given by tcross $ R/v $ 1/βmV. On the other hand,
the dynamical time scale associated to the potential
is tdyn $

√

R3m/α $
√

m/αm3
V. Then the condition

β % β∗ is equivalent to tcross ' tdyn, i.e., the crossing
time should be much smaller than the dynamical time-
scale. Finally, we note that since in the Coulomb case
S ∼ 1/β for α % β, the region where the Sommerfeld
enhancement actually has a 1/v behaviour is β∗ '
β ' α. It is interesting to notice that this region
does not exist at all when m <∼ mV/α.

The other interesting regime to examine is β ' β∗.
Following the discussion above, this corresponds to
the potential energy dominating over the kinetic term.
Referring again to the form (4) for x ' 1 of the
Schrödinger equation, this becomes:

ψ′′ +
α

ε

ψ

x
=

α

ε
ψ. (5)

The positiveness of the right-hand side of the equation
points to the existence of bound states. In fact, this
equation has the same form as the one describing the
hydrogen atom. Then bound states exist when

√

α/ε
is an even integer, i.e. when:

m = 4mVn2/α, n = 1, 2, . . . (6)
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sideration. The actual annihilation cross section times
velocity will then be:
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where (σv)0 is the tree level cross section times veloc-
ity, and in the following we will refer to the factor S
as the “Sommerfeld boost” or “Sommerfeld enhance-
ment” 1.

In this section we will study this process in a semi-
quantitative way using a simple case, namely that of
a particle interacting through a Yukawa potential. We
consider a dark matter particle of mass m. Let ψ(r)
be the reduced two-body wave function for the s-wave
annihilation; in the non-relativistic limit, it will obey
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− V (r)ψ(r) = −mβ2ψ(r), (2)

where β is the velocity of the particle and V (r) =
−α

r e−mVr is an attractive Yukawa potential mediated
by a boson of mass mV.

The Sommerfeld enhancement S can be calculated by
solving the Schrödinger equation with the boundary
condition dψ/dr = imβψ as r → ∞. Eq. (2) can be
easily solved numerically. It is however useful to con-
sider some particular limits in order to gain some qual-
itative insight into the dependence of the Sommerfeld
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ment” can actually be S < 1, although we will not consider
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all, we note that for mV → 0, the potential becomes
Coulomb-like. In this case the Schrödinger equation
can be solved analytically; the resulting Sommerfeld
enhancement is:
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β
(1 − e−πα/β)−1. (3)

For very small velocities (β → 0), the boost S $
πα/β: this is why the Sommerfeld enhancement is
often referred as a 1/v enhancement. On the other
hand, S → 1 when α/β → 0, as one would expect.

It should however be noted that the 1/v behaviour
breaks down at very small velocities. The reason is
that the condition for neglecting the Yukawa part of
the potential is that the kinetic energy of the collision
should be much larger than the boson mass mV times
the coupling constant α, i.e., mβ2 % αmV, and this
condition will not be fulfilled for very small values of
β. This is also evident if we expand the potential in
powers of x = mVr; then, neglecting terms of order x2

or smaller, the Schrödinger equation can be written as
(the prime denotes the derivative with respect to x):

ψ′′ +
α

ε

ψ

x
=

(

−
β2

ε2
+

α

ε

)

ψ, (4)

having defined ε = mV/m. The Coulomb case is
recovered for β2 % αε, or exactly the condition on
the kinetic energy stated above. It is useful to de-
fine β∗ ≡

√

αmV/m such that β % β∗ is the velocity
regime where the Coulomb approximation for the po-
tential is valid.

Another simple, classical interpretation of this result
is the following. The range of the Yukawa interaction
is given by R $ m−1

V . Then the crossing time scale is
given by tcross $ R/v $ 1/βmV. On the other hand,
the dynamical time scale associated to the potential
is tdyn $

√

R3m/α $
√

m/αm3
V. Then the condition

β % β∗ is equivalent to tcross ' tdyn, i.e., the crossing
time should be much smaller than the dynamical time-
scale. Finally, we note that since in the Coulomb case
S ∼ 1/β for α % β, the region where the Sommerfeld
enhancement actually has a 1/v behaviour is β∗ '
β ' α. It is interesting to notice that this region
does not exist at all when m <∼ mV/α.

The other interesting regime to examine is β ' β∗.
Following the discussion above, this corresponds to
the potential energy dominating over the kinetic term.
Referring again to the form (4) for x ' 1 of the
Schrödinger equation, this becomes:

ψ′′ +
α

ε

ψ

x
=

α

ε
ψ. (5)

The positiveness of the right-hand side of the equation
points to the existence of bound states. In fact, this
equation has the same form as the one describing the
hydrogen atom. Then bound states exist when

√

α/ε
is an even integer, i.e. when:

m = 4mVn2/α, n = 1, 2, . . . (6)
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Effective Boost Factor
It is not obvious that one can find models with the 
desired BF for subhalos and main halo. 

leptophilic DM is a subdominant component of the 
total DM, comprising some fraction 1/f.  

Cross section <σv>∼α2/M2

 Parametrize α=√f αth,
By solving Boltzmann eq., the relic density is 
proportional to  <σv>-1

Therefore, the rate of annihilations goes like 
  ρ2σ ∝ 1/f. Accordingly, we define an effective BF
          

S̄ =
S

f
17



Theoretical fits
Given α  ⇒ boost factors for main and subhalos

The working example(larger f is needed for a cuspy 
main halo)
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Figure 15: Predicted effective boost factors 〈S̄〉 as a function of gauge boson mass (solid curves) and target values (or upper limit
in case of main halo, dashed curves) to explain PAMELA/Fermi lepton observations and Fermi gamma ray constraints. Pair
of dashed curves for main halo (MH) correspond respectively to 1 and 2σ upper limits. Left panel is for f = 100, Vmax = 277
km/s, Einasto main halo profile; right is for f = 25, V,max = 201 km/s, isothermal main halo profile. Subhalos are those of
table II. Points which satisfy all constraints are those where subhalo curves intersect their corresponding dashed line while the
main halo curve lies below its dashed lines.

One advantage of requiring large f is that the corre-
sponding dilution of the DM density by 1/f insures that
the model satisfies stringent CMB constraints from anni-
hilations in the early universe changing the optical depth
[53–55], as pointed out in [14]. The CMB constraint is
shown in fig. 16, along with the PAMELA/Fermi allowed
regions from ref. [33] for 4e and 4µ final states. The 4e
case is allowed by the CMB constraint, but 4µ is ruled
out. Because our model has at most a fraction of 0.45 of
muons in the final state, it is probably already safe, but
the additional weakening of the bound by the factor 1/f
ensures that this will be the case. Similarly, our scenario
overcomes the no-go result of ref. [10], which pointed out
that Sommerfeld enhanced annihilation in the early uni-
verse leads to constraints on the MH boost factor which
are lower than those needed to explain the lepton anoma-
lies. Our MH boost factor can satisfy these constraints
since the MH is no longer considered to be the source of
the excess leptons.

The Sommerfeld enhancement is nearly saturated for
the low velocities of the subhalos at these large values of
αg ∼ 0.1−0.35, so their 〈S̄〉 curves are nearly overlapping
except at the smallest gauge boson masses. The main
halo boost factor is not saturated on the other hand, and
lies below the FSR bound for most values of µ. We have
chosen the gauge couplings, parametrized by f , to nearly
saturate the FSR bound. By taking larger αg (larger f),
the bounds could be satisfied by a larger margin. But
this would also reduce the 〈S̄〉 values of the subhalos
by a similar amount, making it more difficult to get a
large enough lepton signal from SH1−SH3. SH4 and SH5
would remain robust possible explanations.
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Figure 16: Allowed regions for PAMELA and Fermi excess
leptons, and upper bounds from inverse Compton gamma
rays, from ref. [33], for Einasto profile with α = 0.17 and
rs = 20 kpc. CMB constraint is from ref. [53].

6. DISCUSSION AND CONCLUSIONS

We have shown that gamma ray constraints on
leptophilic annihilating dark matter are significantly
stronger than in previous studies, when we take into
account the contributions to inverse Compton scatter-
ing from primary and secondary electrons and positrons,
before including excess leptons from the DM annihila-
tion. We attribute part of this difference to the method
of solving the diffusion equation (1) — fully numeri-
cal rather than semi-analytic — meaning that the (r, z)
space-dependence of the diffusion coefficient is taken into
account. The difference between the predicted and ob-
served spectra of gamma rays is greatly reduced, leaving
little room for new contributions. Because of this, even
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Summary
We can get better fit to the lepton data by including 
all the DM subhalos, but the gamma ray constraints 
are still too strong

close subhalo can explain PAMELA/Fermi, also 
consistent with Fermi LAT diffuse gamma ray 
survey

Caveat: Need large, dense subhalos

A realistic U(1) model typically produce too much 
enhancement. This can be solved if only part of the 
DM can annihilate to SM particles in this channel.
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Release Gamma Ray 
Constraints

Electron-positron distribution

subhalos gamma rays are from all the directions 
outside

Main halo gamma rays are largely from the centre of
 the galaxy, because of the peak of  the density profile 
of DM

5

Freely-varying background (Einasto)

MDM (TeV) χ2
Fermi χ2

PAMELA χ2
total BMH BSH

MH (4e) 0.85 15.5 18.7 34.3 90.3 −
MH+SH 1.2 2.3 14.2 16.5 92.8 3774

Fixed GALPROP background (Einasto)

MH (4e) 1.0 8.2 144 152 110 −
MH+SH 2.2 2.1 175 177 146 1946

MH (e, µ,π) 1.2 3.8 109 112 118 −
Isothermal profile (fixed background)

MH (4e) 1.0 9.1 186 195 113 −
MH (e, µ,π) 1.2 3.0 151 154 119 −

Table I: First four rows: best fit results from [11], assuming
Einasto profile. By varying the boost factors of the main halo
and faraway subhalos separately, we found that the fit to the
PAMELA and Fermi data from MH annihilations alone could
be improved by inclusion of SH annihilations as shown. Last
two rows: new fit for isothermal profile (rs = 3.2 kpc, ρs =
3.0 GeV/cm3), main-halo-only scenario from this work, using
the fixed GALPROP background, and same parameters as in
[11]. We assume the annilation to the 4e final state, except
in the cases “MH (e, µ,π)” which indicates the the process
χχ → BB → 4$, where $ stands for e±, µ± or π±, with
branching ratios re = rµ = 0.45 and rπ = 0.1 as explained in
Section 2.2.

In each fi, the square root factor comes from the phase
space, while the rest is from the squared matrix ele-
ment for the decay. Below threshold, fi is defined to be
zero. For a gauge boson with a mass µ >∼ 1 GeV, we find
re = rµ = 0.45 and rπ = 0.1. In this case the electrons
produced from the final decay of the µ’s and π’s peak at
a lower energy, thus requiring a slightly higher mass of
MDM = 1.2 TeV in order to fit the Fermi and PAMELA
data. This is much smaller than the well-known MDM "
2.2 TeV best fit in the pure-muon final state [4, 5, 33] be-
cause of the large fraction of gauge bosons still decaying
directly to high-energy electrons. These results are also
shown in Table I.

3. GAMMA RAY COMPUTATION FROM
INVERSE COMPTON SCATTERING AND

BREMSSTRAHLUNG

3.1. “Prompt” gamma ray emission
(bremsstrahlung)

Prompt gamma ray emission appears in the final stage
of DM annihilation, softening the lepton spectrum. The
flux can be divided into main halo and subhalo parts:

dΦ

dEγdΩ
=

dΦmain

dEγdΩ
+

dΦsub

dEγdΩ
. (9)

Figure 2: Simulated steady-state distribution of electrons and
positrons from DM annihilation within the Milky Way diffu-
sion zone. The galactic center is located at z = 0, r = 0;
red corresponds to high densities, blue to low densities. Top:
leptons from the main halo only. Bottom: leptons from the
subhalos only, sourced from the diffusion zone boundary. Note
that the scales are different: the peak main halo density (at
the GC) is about 200 times larger than the peak subhalo den-
sity (near the edge of the diffusion zone)

The astrophysical and particle physics dependences of
each flux can be factorized as

dΦmain

dEγdΩ
=

1

2

〈σv〉
4π

r!
ρ2!
m2

χ

dN

dEγ
J̄main (10)

and

dΦsub

dEγdΩ
=

1

2
〈σv〉

dN

dEγ
J̄sub. (11)

In each case, the J̄i factor depends only upon astrophys-
ical inputs. The main halo J factor is defined as a line
of sight (l.o.s.) integral of flux at each pixel:

J̄main =
1

∆Ω

∫

∆Ω
dΩ

∫

l.o.s.

ds

r!

(

ρmain[r(s,ψ)]

ρ!

)2

. (12)

In the case of flux originating from many distant subha-
los, we may treat each one as a point source of radiation.
In this case, the diffuse flux per solid angle requires a
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In the case of flux originating from many distant subha-
los, we may treat each one as a point source of radiation.
In this case, the diffuse flux per solid angle requires a
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Gamma Ray Constraints
We obtained the constraints for the MH boost factor in 
the case of Einasto DM profile, annihilation to 4e
BF<25(35) at 1σ(2σ) for MDM=1Tev
BF<42(52) at 1σ(2σ) for MDM=2.2Tev

Increasing intermediate gauge boson to allow decay 
to μ and π
BF<23(38) at 1σ(2σ) for MDM=1.2Tev

And choosing a flatter isothermal DM density profile
BF<62(72) at 1σ(2σ) for MDM=1.2Tev
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Diffusion Equation
Semi-analytic approach to solve the diffusion eq.

Q is the source term from subhalo

Subhalo has the similar
 DM density distribution
 as the main halo.

d

dt
ψe±(x,p, t) = Qe±(x, E) +∇ · (D(E)∇ψe±(x,p, t)) +

∂

∂E
[b(x, E)ψ±(x,p, t)]

Q =
1

2

�
ρ(x)

M

�2

�σv�dN
dE

=
n2
DM

2
BF �σv�0

dN

dE
.

ρEin(r) = ρsexp

�
− 2

α

��
r

rs

�α

− 1

��

ρiso(r) =
ρs

1 + (r/rs)2
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Five subhalos
Sample subhalos from the Via Lactea Ⅱ simulation. 
Using them fitting the PAMELA/Fermi lepton fluxes 
and Fermi gamma ray fluxes.

Subhalo rs (kpc) ρs logBF dmin (pc) Vmax (km/s)
1 0.01 69 4.74 33.9 2.9
2 0.1 3.46 4.34 95.5 6.7
3 3.2 0.04 3.76 178 22
4 0.9 1.27 2.35 165 36
5 1.1 2.0 1.70 170 55

Main halo, 4e channel

Einasto 25 0.048 < 1.40
1.48 − 201− 277

Isothermal 3.2 2.32 < 1.81
1.88 − 201− 277

Main halo, 4e + 4µ + 4π channel

Einasto 25 0.048 < 1.36
1.45 − 201− 277

Isothermal 3.2 2.32 < 1.80
1.86 − 201− 277
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Close Subhalo vs. 
main hao

Gamma ray fluxes on 
galactic latitude b, in the 
region -9o<l<9o 
at E=23 Gev.
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Relic Density Constraint

Sommerfeld enhancement sensitively relies on α

Model: DM has a U(1) gauge symmetry.
            Kinetic mixing εB μνFμν.

There are two kinds of final states for annihilation of 
DM 

q is the U(1) charge of h relative to χ.
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Figure 13: Value of gauge coupling leading to correct ther-
mal relic DM density, αg,th/M , versus squared charge of dark
Higgs bosons in U(1) model, for several values of DM mass
M .

With these ingredients, we can compute an average
Sommerfeld enhancement factor 〈S〉 for each subhalo:

〈S〉 =
∫ r2
r1

dr r2 ρ2
∫

d3v1 d3v2 f(v1) f(v2)S(
1
2 |"v1 − "v2|)

∫ r2
r1

dr r2 ρ2

(28)
The factor of 1

2 in the argument of S occurs because the
v appearing in eq. (23) through εv is half of the relative
velocity. ρ2 is the appropriate weighting factor because
the rate of annihilations is proportional to 〈σv〉ρ2. For
the subhalos, the range of integration for r is from 0
to ∞, but for the main halo we take lower and upper
limits r1,2 that correspond to the angular region of the
sky that is used to set the gamma ray constraints: r1 =
0.67 kpc and r2 = 1.34 kpc. The reason is that the
bound S̄ < 30 for the main halo comes from the gamma
ray constraint rather than from lepton production. We
are thus interested in the boost factor relevant to the
region 4.5◦ < |b| < 9◦ of galactic latitude. The distances
of closest approach to the galactic center, hence largest
rate of γ ray production associated with these lines of
sight, are given by r = r" sin b.

5.2. Relic Density Constraint

The enhancement factor (23) depends rather strongly
on the gauge coupling αg; therefore it is interesting to
know what constraint the relic density places upon αg.
The effect of a Sommerfeld-enhanced DM model on the
relic densitie has been discussed by [51]. Notice that DM
transforming under a U(1) gauge symmetry as we have
assumed must be Dirac and therefore could have a relic
density through its asymmetry, similar to baryons. How-
ever, unless the DM was never in thermal equilibrium,
then αg should not be less than the usual value αg,th

leading to the correct relic density, since otherwise the
thermal component will be too large.

There are two kinds of final states for annihilation of
DM in this class of models: into a pair of gauge bosons
Bµ, by virtual DM exchange in the t and u channels, or
into dark Higgs bosons h, by exchange of a gauge boson
in the s channel. Assuming the DM (χ) is much heavier
than the final states, the respective squared amplitudes,
averaged over initial and summed over final spins, are

1

4

∑

|M|2 =

{

4g4(1 + 2v2), χχ → BB
1
2g

4q2(1− v2 cos2 θ), χχ → hh̄

(29)
where q is the U(1) charge of h relative to χ (replace
q2 →

∑

i q
2
i for multiple Higgs bosons), θ is the scat-

tering angle, and we have included the leading depen-
dence on the initial velocity v in the center of mass
frame. The factor cos2 θ averages to 2/3 in the inte-
gral over θ. In computing the associated cross section,
it must be remembered that the 2B final state consists
of identical particles, while the Higgs channel does not.
The total amplitude can therefore be written in the form
1
4

∑

|M|2 = 4g4(a+ bv2), with

a = 1 + 1
4

∑

i q
2
i , b = 2(1− 1

12

∑

i q
2
i ) (30)

if we use the phase space for identical particles.
To find the cross section relevant during freeze-out in

the early universe, we thermally average the v-dependent
σvrel following ref. [52]. We include approximately the
effect of Sommerfeld enhancement as described there, to
obtain

〈σvrel〉 ∼=
πα2

g

2M2

(

a

(

1 + αg

√

πM
T

)

+
T

M
(b− 4

3a)
(

3
2 + αg

√

πM
T

)

)

(31)

The terms that are subleading in αg, but enhanced by
√

M/T , are due to the Sommerfeld correction. We ap-
proximate the freezeout temperature as T ∼= M/20, the
usual result of solving the Boltzmann equation for DM
in the TeV mass range, and equate 〈σvrel〉 to the value
〈σv〉0 = 3 × 10−26 cm3/s usually assumed to give the
correct relic density. This gives an implicit equation for
αg,th of the form α2

g = c1M2〈σv〉0/(1+c2αg), which how-
ever quickly converges by numerically iterating. Fig. 13
displays the resulting dependence of αg,th/M on

∑

i q
2
i

for several values of M .
The bound that the density of the leptophilic DM com-

ponent not exceed the total DM density is αg > αg,th.
We parametrize the coupling by αg =

√
f αg,th with

f > 1 in what follows.

5.3. Interpolation between 4e and mixed final states

In our numerical computations with GALPROP, we
considered two cases for the final state annihilation chan-
nels: either χχ → 4e, applicable for gauge bosons with
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Relic Density Constraint

Include approximately the effect of Sommerfeld 
enhancement, the cross section is given by
(Cline, Frey, Fang 1008.1784)

α=√f αth, f>1

13

0 5 10 15
!i q

2
i

0.02

0.025

0.03

0.035

"
g,

 th
# 

 ( 
M

 / 
Te

V
)-1

M = 1 TeV
M = 2 TeV
M = 3 TeV

Figure 13: Value of gauge coupling leading to correct ther-
mal relic DM density, αg,th/M , versus squared charge of dark
Higgs bosons in U(1) model, for several values of DM mass
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tering angle, and we have included the leading depen-
dence on the initial velocity v in the center of mass
frame. The factor cos2 θ averages to 2/3 in the inte-
gral over θ. In computing the associated cross section,
it must be remembered that the 2B final state consists
of identical particles, while the Higgs channel does not.
The total amplitude can therefore be written in the form
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if we use the phase space for identical particles.
To find the cross section relevant during freeze-out in

the early universe, we thermally average the v-dependent
σvrel following ref. [52]. We include approximately the
effect of Sommerfeld enhancement as described there, to
obtain
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The terms that are subleading in αg, but enhanced by
√

M/T , are due to the Sommerfeld correction. We ap-
proximate the freezeout temperature as T ∼= M/20, the
usual result of solving the Boltzmann equation for DM
in the TeV mass range, and equate 〈σvrel〉 to the value
〈σv〉0 = 3 × 10−26 cm3/s usually assumed to give the
correct relic density. This gives an implicit equation for
αg,th of the form α2

g = c1M2〈σv〉0/(1+c2αg), which how-
ever quickly converges by numerically iterating. Fig. 13
displays the resulting dependence of αg,th/M on

∑

i q
2
i

for several values of M .
The bound that the density of the leptophilic DM com-

ponent not exceed the total DM density is αg > αg,th.
We parametrize the coupling by αg =

√
f αg,th with

f > 1 in what follows.

5.3. Interpolation between 4e and mixed final states

In our numerical computations with GALPROP, we
considered two cases for the final state annihilation chan-
nels: either χχ → 4e, applicable for gauge bosons with
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Figure 13: Value of gauge coupling leading to correct ther-
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With these ingredients, we can compute an average
Sommerfeld enhancement factor 〈S〉 for each subhalo:

〈S〉 =
∫ r2
r1

dr r2 ρ2
∫

d3v1 d3v2 f(v1) f(v2)S(
1
2 |"v1 − "v2|)

∫ r2
r1

dr r2 ρ2

(28)
The factor of 1

2 in the argument of S occurs because the
v appearing in eq. (23) through εv is half of the relative
velocity. ρ2 is the appropriate weighting factor because
the rate of annihilations is proportional to 〈σv〉ρ2. For
the subhalos, the range of integration for r is from 0
to ∞, but for the main halo we take lower and upper
limits r1,2 that correspond to the angular region of the
sky that is used to set the gamma ray constraints: r1 =
0.67 kpc and r2 = 1.34 kpc. The reason is that the
bound S̄ < 30 for the main halo comes from the gamma
ray constraint rather than from lepton production. We
are thus interested in the boost factor relevant to the
region 4.5◦ < |b| < 9◦ of galactic latitude. The distances
of closest approach to the galactic center, hence largest
rate of γ ray production associated with these lines of
sight, are given by r = r" sin b.

5.2. Relic Density Constraint

The enhancement factor (23) depends rather strongly
on the gauge coupling αg; therefore it is interesting to
know what constraint the relic density places upon αg.
The effect of a Sommerfeld-enhanced DM model on the
relic densitie has been discussed by [51]. Notice that DM
transforming under a U(1) gauge symmetry as we have
assumed must be Dirac and therefore could have a relic
density through its asymmetry, similar to baryons. How-
ever, unless the DM was never in thermal equilibrium,
then αg should not be less than the usual value αg,th

leading to the correct relic density, since otherwise the
thermal component will be too large.

There are two kinds of final states for annihilation of
DM in this class of models: into a pair of gauge bosons
Bµ, by virtual DM exchange in the t and u channels, or
into dark Higgs bosons h, by exchange of a gauge boson
in the s channel. Assuming the DM (χ) is much heavier
than the final states, the respective squared amplitudes,
averaged over initial and summed over final spins, are
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where q is the U(1) charge of h relative to χ (replace
q2 →

∑
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i for multiple Higgs bosons), θ is the scat-

tering angle, and we have included the leading depen-
dence on the initial velocity v in the center of mass
frame. The factor cos2 θ averages to 2/3 in the inte-
gral over θ. In computing the associated cross section,
it must be remembered that the 2B final state consists
of identical particles, while the Higgs channel does not.
The total amplitude can therefore be written in the form
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if we use the phase space for identical particles.
To find the cross section relevant during freeze-out in

the early universe, we thermally average the v-dependent
σvrel following ref. [52]. We include approximately the
effect of Sommerfeld enhancement as described there, to
obtain
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The terms that are subleading in αg, but enhanced by
√

M/T , are due to the Sommerfeld correction. We ap-
proximate the freezeout temperature as T ∼= M/20, the
usual result of solving the Boltzmann equation for DM
in the TeV mass range, and equate 〈σvrel〉 to the value
〈σv〉0 = 3 × 10−26 cm3/s usually assumed to give the
correct relic density. This gives an implicit equation for
αg,th of the form α2

g = c1M2〈σv〉0/(1+c2αg), which how-
ever quickly converges by numerically iterating. Fig. 13
displays the resulting dependence of αg,th/M on
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for several values of M .
The bound that the density of the leptophilic DM com-

ponent not exceed the total DM density is αg > αg,th.
We parametrize the coupling by αg =

√
f αg,th with

f > 1 in what follows.

5.3. Interpolation between 4e and mixed final states

In our numerical computations with GALPROP, we
considered two cases for the final state annihilation chan-
nels: either χχ → 4e, applicable for gauge bosons with
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mal relic DM density, αg,th/M , versus squared charge of dark
Higgs bosons in U(1) model, for several values of DM mass
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With these ingredients, we can compute an average
Sommerfeld enhancement factor 〈S〉 for each subhalo:

〈S〉 =
∫ r2
r1

dr r2 ρ2
∫

d3v1 d3v2 f(v1) f(v2)S(
1
2 |"v1 − "v2|)

∫ r2
r1

dr r2 ρ2

(28)
The factor of 1

2 in the argument of S occurs because the
v appearing in eq. (23) through εv is half of the relative
velocity. ρ2 is the appropriate weighting factor because
the rate of annihilations is proportional to 〈σv〉ρ2. For
the subhalos, the range of integration for r is from 0
to ∞, but for the main halo we take lower and upper
limits r1,2 that correspond to the angular region of the
sky that is used to set the gamma ray constraints: r1 =
0.67 kpc and r2 = 1.34 kpc. The reason is that the
bound S̄ < 30 for the main halo comes from the gamma
ray constraint rather than from lepton production. We
are thus interested in the boost factor relevant to the
region 4.5◦ < |b| < 9◦ of galactic latitude. The distances
of closest approach to the galactic center, hence largest
rate of γ ray production associated with these lines of
sight, are given by r = r" sin b.

5.2. Relic Density Constraint

The enhancement factor (23) depends rather strongly
on the gauge coupling αg; therefore it is interesting to
know what constraint the relic density places upon αg.
The effect of a Sommerfeld-enhanced DM model on the
relic densitie has been discussed by [51]. Notice that DM
transforming under a U(1) gauge symmetry as we have
assumed must be Dirac and therefore could have a relic
density through its asymmetry, similar to baryons. How-
ever, unless the DM was never in thermal equilibrium,
then αg should not be less than the usual value αg,th

leading to the correct relic density, since otherwise the
thermal component will be too large.

There are two kinds of final states for annihilation of
DM in this class of models: into a pair of gauge bosons
Bµ, by virtual DM exchange in the t and u channels, or
into dark Higgs bosons h, by exchange of a gauge boson
in the s channel. Assuming the DM (χ) is much heavier
than the final states, the respective squared amplitudes,
averaged over initial and summed over final spins, are
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where q is the U(1) charge of h relative to χ (replace
q2 →

∑

i q
2
i for multiple Higgs bosons), θ is the scat-

tering angle, and we have included the leading depen-
dence on the initial velocity v in the center of mass
frame. The factor cos2 θ averages to 2/3 in the inte-
gral over θ. In computing the associated cross section,
it must be remembered that the 2B final state consists
of identical particles, while the Higgs channel does not.
The total amplitude can therefore be written in the form
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if we use the phase space for identical particles.
To find the cross section relevant during freeze-out in

the early universe, we thermally average the v-dependent
σvrel following ref. [52]. We include approximately the
effect of Sommerfeld enhancement as described there, to
obtain
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The terms that are subleading in αg, but enhanced by
√

M/T , are due to the Sommerfeld correction. We ap-
proximate the freezeout temperature as T ∼= M/20, the
usual result of solving the Boltzmann equation for DM
in the TeV mass range, and equate 〈σvrel〉 to the value
〈σv〉0 = 3 × 10−26 cm3/s usually assumed to give the
correct relic density. This gives an implicit equation for
αg,th of the form α2

g = c1M2〈σv〉0/(1+c2αg), which how-
ever quickly converges by numerically iterating. Fig. 13
displays the resulting dependence of αg,th/M on
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for several values of M .
The bound that the density of the leptophilic DM com-

ponent not exceed the total DM density is αg > αg,th.
We parametrize the coupling by αg =

√
f αg,th with

f > 1 in what follows.

5.3. Interpolation between 4e and mixed final states

In our numerical computations with GALPROP, we
considered two cases for the final state annihilation chan-
nels: either χχ → 4e, applicable for gauge bosons with
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Figure 14: Solid lines: predicted main halo boost factor for
thermal value of αg, with dark Higgs boson charges

∑
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i =

16 and maximum circular velocity Vmax = 277 km/s. Up-
per curve is for Einasto profile, lower for isothermal. Dashed
line is 2σ upper limit from gamma rays produced by inverse
Compton scattering. The failure to satisfy this bound even
with large dark Higgs content and large Vmax drives us to
consider larger than thermal gauge couplings, f > 1.

mass µ < 2mµ, or to a mixture of electrons, muons and
charged pions, appropriate for decays of gauge bosons
with mass greater than 2mπ. The relative abundance
of e, µ and π in the mixed final state can be computed
from the branching fractions of the decays, discussed in
connection with eq. (8).
For intermediate values of the gauge boson mass,

2mµ < µ <∼ 2mπ, we can use the branching ratios to in-
terpolate between our maximum-allowed MH or best-fit
SH boost factors for the 4e case and those of the fidu-
cial e+ µ+ π case. The maximum allowed boost factors
of the main halo complying with the ICS constraints are
taken from table II. To estimate the best fit boost factors
for the subhalos in the fiducial e + µ + π final state, we
rescale the 4e results shown in table II by the ratio of
best-fit boost factors for the main halo, in the MH-only
scenario. These ratios are 118/110 for the Einasto pro-
file and 119/113 for the isothermal, quite close to unity,
and so the best-fit values of the SH boost factors hardly
depend upon this scaling. More significant is the change
in the best-fit mass, from M = 1.0 to 1.2 TeV, which
enters into the computation of the Sommerfeld enhance-
ment and the value of the gauge coupling (αg ∼ M). We
use the branching ratios to interpolate M as well. For
the MH upper bounds in the small- and large-µ regions,
we use the values from Table II, and interpolate similarly
for intermediate µ.

5.4. Theoretical fits

For a given value of the gauge coupling αg, we can de-
termine the predicted boost factors as well as the desired
values for each subhalo, as a function of the gauge boson

mass µ, and similarly for the main halo, except here we
have an upper bound on 〈S̄〉 rather than a best-fit value.
This bound in fact presents the biggest challenge to find-
ing a working particle physics model. For αg close to
the thermal relic density value αg,th, the predicted boost
factor of the main halo far exceeds the bound 〈S̄〉 <∼ 30,
even if we try to decrease 〈S̄〉 by reducing αg via a large
hidden Higgs content or by increasing the dispersion of
the main halo. Fig. 14 illustrates the discrepancy for
∑

i q
2
i = 16 and Vmax = 277 km/s. Lower values of Vmax

or
∑

i q
2
i only make this tension worse.

As we mentioned above, even though it is not theoreti-
cally possible to make the gauge coupling weak enough to
solve this problem, ironically one can rescue the scenario
by increasing αg beyond the thermal value, since this
suppresses the relic density of the DM component we are
interested in, and thus reduces the scattering rate. Al-
lowing αg =

√
fαg,th decreases both the density of the

leptophilic component and the effective boost factor by
1/f . With f ∼ 50 − 500, depending upon the shape of
the main halo DM density profile, we can satisfy the con-
straint on the MH and still have a large enough boost in
certain hypothetical nearby subhalos for them to supply
the observed lepton excess. The minimum value of f that
is needed is larger for a cuspy main halo.

We give two working examples in figure 15, one with
f = 500 and Vmax = 277 km/s (the larger value advo-
cated in ref. [50]) and assuming an Einasto profile for the
main halo, and the other having f = 50 and Vmax = 201
km/s (the more standard assumption for the velocity dis-
persion), with an isothermal halo. In these figures the
averaged boost factor 〈S̄〉 of the relevant subhalos are
plotted as solid lines, while the required values of 〈S̄〉
are the dashed curves. Wherever these intersect repre-
sents a possible value of the gauge boson mass to consis-
tently explain the observed lepton excess. At the same
time, the main halo boost factor (lowest solid curve in
the small-µ region) must lie below the black dashed lines
to satifsy gamma ray constraints. The rationale for tak-
ing the larger value of Vmax for the Einasto profile is that
larger velocities help to suppress the boost factors and
thus make it easier to satisfy the ICS constraint, so that
we are not forced to choose an even larger value of f .
The isothermal profile is less constrained.

In the first panel of fig. 15 with the Einasto profile,
only subhalos SH4 and SH5 have large enough boost fac-
tors to ever reach the required values. There are many
points of intersection, but mainly those for SH5 and in
the mass range µ < 750 MeV are consistent with the
gamma ray bounds on the main halo. For the isothermal
halo, these constraints are less stringent, and it is possible
to find points of intersection using f = 50 for all five of
the sample subhalos, although they are much more rare
for SH1−SH3 than for SH4 and SH5. In this example,
the intersection points that respect the ICS bound are
restricted to µ <∼ 1 GeV. For larger values of f , all the
boost factors will be further suppressed, and µ > 1 GeV
will become allowed for SH4 and SH5.
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Figure 15: Predicted effective boost factors 〈S̄〉 as a function of gauge boson mass (solid curves) and target values (or upper limit
in case of main halo, dashed curves) to explain PAMELA/Fermi lepton observations and Fermi gamma ray constraints. Pair
of dashed curves for main halo (MH) correspond respectively to 1 and 2σ upper limits. Left panel is for f = 100, Vmax = 277
km/s, Einasto main halo profile; right is for f = 25, V,max = 201 km/s, isothermal main halo profile. Subhalos are those of
table II. Points which satisfy all constraints are those where subhalo curves intersect their corresponding dashed line while the
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One advantage of requiring large f is that the corre-
sponding dilution of the DM density by 1/f insures that
the model satisfies stringent CMB constraints from anni-
hilations in the early universe changing the optical depth
[53–55], as pointed out in [14]. The CMB constraint is
shown in fig. 16, along with the PAMELA/Fermi allowed
regions from ref. [33] for 4e and 4µ final states. The 4e
case is allowed by the CMB constraint, but 4µ is ruled
out. Because our model has at most a fraction of 0.45 of
muons in the final state, it is probably already safe, but
the additional weakening of the bound by the factor 1/f
ensures that this will be the case. Similarly, our scenario
overcomes the no-go result of ref. [10], which pointed out
that Sommerfeld enhanced annihilation in the early uni-
verse leads to constraints on the MH boost factor which
are lower than those needed to explain the lepton anoma-
lies. Our MH boost factor can satisfy these constraints
since the MH is no longer considered to be the source of
the excess leptons.

The Sommerfeld enhancement is nearly saturated for
the low velocities of the subhalos at these large values of
αg ∼ 0.1−0.35, so their 〈S̄〉 curves are nearly overlapping
except at the smallest gauge boson masses. The main
halo boost factor is not saturated on the other hand, and
lies below the FSR bound for most values of µ. We have
chosen the gauge couplings, parametrized by f , to nearly
saturate the FSR bound. By taking larger αg (larger f),
the bounds could be satisfied by a larger margin. But
this would also reduce the 〈S̄〉 values of the subhalos
by a similar amount, making it more difficult to get a
large enough lepton signal from SH1−SH3. SH4 and SH5
would remain robust possible explanations.
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Figure 16: Allowed regions for PAMELA and Fermi excess
leptons, and upper bounds from inverse Compton gamma
rays, from ref. [33], for Einasto profile with α = 0.17 and
rs = 20 kpc. CMB constraint is from ref. [53].

6. DISCUSSION AND CONCLUSIONS

We have shown that gamma ray constraints on
leptophilic annihilating dark matter are significantly
stronger than in previous studies, when we take into
account the contributions to inverse Compton scatter-
ing from primary and secondary electrons and positrons,
before including excess leptons from the DM annihila-
tion. We attribute part of this difference to the method
of solving the diffusion equation (1) — fully numeri-
cal rather than semi-analytic — meaning that the (r, z)
space-dependence of the diffusion coefficient is taken into
account. The difference between the predicted and ob-
served spectra of gamma rays is greatly reduced, leaving
little room for new contributions. Because of this, even
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